宝山钢铁股份有限公司企业标准 烘烤硬化高强度冷连轧钢板及钢带

Q/BQB 416-2009

代替 Q/BQB 416-2003

1 范围

本标准规定了烘烤硬化高强度冷连轧钢板及钢带的术语和定义、分类和代号、尺寸、外形、 重量、技术要求、检验和试验、包装、标志及检验文件等。

本标准适用于宝山钢铁股份有限公司生产的厚度为 0.50mm~2.5mm 的烘烤硬化高强度 冷连轧钢板及钢带(以下简称钢板及钢带)。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后 所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达 成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件, 其最新版本 话用干太标准

5用十本标准。	
GB/T 222-2006	钢的成品化学成分允许偏差
GB/T 223	钢铁及合金化学分析方法
GB/T 228-2002	金属材料 室温拉伸试验方法
GB/T 2523-2008	冷轧金属薄板(带)表面粗糙度和峰值数的测量方法
GB/T 2975-1998	钢及钢产品 力学性能试验取样位置及试样制备
GB/T 4336-2002	碳素钢和中低合金钢 火花源原子发射光谱分析方法(常规
	法)
GB/T 5027-2007	金属材料 薄板和薄带 塑性应变比(r值)的测定
GB/T 5028-2008	金属材料 薄板和薄带 拉伸应变硬化指数 (n 值)的测定
GB/T 8170-2008	数值修约规则与极限数值的表示和判定
GB/T 20066-2006	钢和铁 化学成分测定用试样的取样和制样方法
GB/T 20123-2006	钢铁 总碳硫含量的测定 高频感应炉燃烧后红外吸收法(常
	规方法)
GB/T 20125-2006	低合金钢 多元素含量的测定 电感耦合等离子体原子发射
	光谱法
GB/T 20126-2006	非合金钢 低碳含量的测定 第2部分:感应炉(经预加热)
	内燃烧后红外吸收法
Q/BQB 400	冷轧产品的包装、标志及检验文件
Q/BQB 401	冷连轧钢板及钢带的尺寸、外形、重量及允许偏差

3 术语和定义

3.1 烘烤硬化高强度钢 bake hardening steels (B)

在钢中保留一定量的固溶碳、氮原子,同时可通过添加磷、锰等强化元素来提高强度。加工 成形后,在一定温度下烘烤后,由于时效硬化使钢的屈服强度进一步升高。通常应用于汽车 外覆盖件。

4 分类和代号

- 4.1 钢板及钢带按用途区分应符合表 1 的规定。
- 4.2 钢板及钢带按表面质量区分应符合表 2 的规定。
- 4.3 钢板及钢带按表面结构区分应符合表 3 的规定。

表 1

牌号	用途
B140H1	深冲压用
B180H1、B180H2、HC180B	冲压用
HC220B	一般用或冲压用
HC260B	结构用或一般用
HC300B	结构用

表 2

	-		
级别	代 号		
较高级的精整表面	FB		
高级的精整表面	FC		
超高级的精整表面	FD		
表	3		
表 面 结 构	代 号		
麻面	D		

5 订货所需信息

- 5.1 订货时用户应提供如下信息:
 - a) 产品名称 (钢板或钢带);
 - b) 本产品标准号;
 - c) 牌号;
 - d) 产品规格及尺寸、不平度精度;

光亮表面

- e) 边缘状态:
- f) 表面结构;
- g) 表面质量级别;
- h) 包装方式;
- i) 用途;
- j) 其他。
- 5.2 如订货合同中未注明尺寸及不平度精度、表面结构、表面质量级别、边缘状态及包装方式,则本标准产品按普通的尺寸及不平度精度、表面结构为麻面、FB 级表面质量的切边钢带及切边钢板供货,并按供方提供的包装方式包装。

6 尺寸、外形、重量及允许偏差

钢板及钢带的尺寸、外形、重量及允许偏差应符合 Q/BQB 401 的规定。

7 技术要求

7.1 化学成分

7.1.1 钢的化学成分(熔炼分析)应符合表 4 的规定。

表 4

_						
牌号	化学成分(熔炼分析) % (质量分数)					
//平·与	С	Mn	P	S	Alt	Nba
B140H1	≤0.006	≤0.40	≤0.04	≤0.020	≥0.015	≤0.10
B180H1	≤0.008	≤1.00	≤0.08	≤0.020	≥0.015	≤0.10
B180H2	≤0.020	≤0.40	≤0.12	≤0.025	≥0.015	-
HC180B	≤0.05	≤0.70	≤0.06	≤0.025	≥0.015	-
HC220B	≤0.06	≤0.70	≤0.08	≤0.025	≥0.015	-
HC260B	≤0.08	≤0.70	≤0.10	≤0.025	≥0.015	-
HC300B	≤0.10	≤0.70	≤0.12	≤0.025	≥0.015	-
a 可用Ti部分或全部代替Nb. 此时Ti和/或Nb的总含量<0.10%。						

^{7.1.2} 钢板及钢带的成品化学成分允许偏差应符合 GB/T 222 的规定。

7.2 冶炼方法

钢板及钢带所用的钢采用氧气转炉冶炼。

7.3 交货状态

- 7.3.1 钢板及钢带冷连轧后经退火及平整后交货。
- 7.3.2 钢板及钢带通常涂油供货,所涂油膜应能用碱水溶液去除。在通常的包装、运输、装卸和储存条件下,供方应保证自制造完成之日起 6 个月内,钢板及钢带表面不生锈。根据需方要求,经供需双方协议并在合同中注明,亦可以不涂油供货。

7.4 力学性能

- 7.4.1 供方保证在制造完成之日起 3 个月内,钢板及钢带的力学性能应符合表 5 和表 6 的规定。
- 7.4.2 由于时效的影响,钢板及钢带的力学性能会随着储存时间的延长而变差,如屈服强度

和抗拉强度的上升,断后伸长率的下降,成形性能变差、出现拉伸应变痕等,建议用户尽早使用。

表 5

	拉伸试验a						1
牌号	牌号 屈服强度 抗拉强度 (L		断后伸长率 (L ₀ =50mm, b=25mm) % 不小于	断后伸长率 Asomm % 不小于	r ₉₀ 值d 不小于	n 90值 不小于	烘烤硬化值 (BH ₂) MPa 不小于
В140Н1 ь	140~230	270	41		1.8	0.20	30
B180H1 b	180~280	340	35		1.6	0.18	30
B180H2 c	180~280	340	_	32	1.6	0.18	30

- a 当屈服现象不明显时采用R_{P0.2},否则采用R_{eL}。
- b 试样为GB/T 228 中的P14 试样,试样方向为横向。
- c 试样为GB/T 228 中的P6 试样,试样方向为横向。
- d 厚度大于 2.0mm时,r90值允许降低 0.2。

表 6

	拉伸试验a, b, c					烘烤硬化值
牌号	屈服强度 MPa	抗拉强度 MPa 不小于	断后伸长率 A _{80mm} % 不小于	r ₉₀ 值 ^d 不小于	n ₉₀ 值 不小于	(BH ₂)
HC180B	180~230	300-360	34	1.6	0.17	30
HC220B	220~270	320-400	32	1.5	0.16	30
HC260B	260~320	360-440	29	_	_	30
HC300B	300~360	400-480	26	_	_	30

- a 当屈服现象不明显时采用RP0.2, 否则采用ReL。
- b 试样为GB/T 228 中的P6 试样。
- c 厚度不大于 0.7mm时,断后伸长率允许降低 2%。
- d 厚度大于 2.0mm时,r90值允许降低 0.2。

7.5 拉伸应变痕

室温储存条件下,对于表面质量要求为 FC 和 FD 的钢板及钢带,应保证在制造完成之日起的 3 个月内使用时不出现拉伸应变痕。

7.6 表面质量

7.6.1 钢板及钢带表面不得有结疤、裂纹、夹杂等对使用有害的缺陷,钢板及钢带不得有分层

7.6.2 钢板及钢带各表面质量级别的特征应符合表 7 的规定。

表 7

级 别	代 号	特征
较高级的精整表面	FB	表面允许有少量不影响成型性及涂、镀附着力的缺陷,如轻微的划伤、压痕、麻点、辊印及氧化色等。
高级的精整表面	FC	产品二面中较好的一面无肉眼可见的明显缺欠,另一面必须至少 达到 FB 的要求。
超高级的精整表面	FD	产品二面中较好的一面不得有任何缺欠,即不能影响涂漆后的外观质量或电镀后的外观质量,另一面必须至少达到 FB 的要求。

7.6.3 对于钢带,由于没有机会切除带缺陷部分,因此钢带允许带缺陷交货,但有缺陷的部分不得超过每卷总长度的 6%。

7.7表面结构

表面结构为麻面(D)时平均粗糙度 Ra 按 $0.6\mu m$ < Ra $\le 1.9\mu m$ 控制,表面结构为光亮表面(B)时平均粗糙度 Ra 按 Ra $\le 0.9\mu m$ 控制。

8 检验和试验

- 8.1 钢板及钢带的外观用肉眼检查。
- 8.2 钢板及钢带的尺寸、外形应用合适的测量工具测量。
- 8.3 r 值是在 15%应变时计算得到的,均匀延伸小于 15%时,按均匀延伸结束时的应变值进行计算。n 值是在 10%~20%应变范围内计算得到的,均匀延伸小于 20%时,计算的应

变范围为10%至均匀延伸结束。

- 8.4 钢板及钢带应按批验收,每个检验批应由不大于30吨的同牌号、同规格、同加工状态的钢板及钢带组成,对于卷重大于30吨的钢带,可以每卷作为一个检验批。
- 8.5 每批钢板及钢带的检验项目、试样数量、取样方法、试验方法及取样方向应符合表 8 的规定。

表 8

检验项目	试样数量(个)	取样方法	试验方法		
化学分析	1/炉	CD /T 00066	GB/T 223、GB/T 4336、GB/T 20123、		
化子分例		GB/T 20066	GB/T 20125、GB/T 20126		
拉伸试验	1/批		GB/T 228		
塑性应变比(r 值)	1/批		GB/T 5027		
应变硬化指数(n 值)	1/批	GB/T 2975	GB/T 5028		
BH ₂ 值	1/批	,	附录 A		
表面粗糙度	_		GB/T 2523		

8.6 对于拉伸、塑性应变比(r值)、应变硬化指数(n值)和BH₂值试验,某一项试验结果不符合标准要求,则从同一批中再任取双倍数量的试样进行该不合格项目的复验。复验结果(包括该项目试验所要求的所有指标)合格,则整批合格。复验结果(包括该项目试验所要求的所有指标)即使有一个指标不合格,则复验不合格。如复验不合格,则已做试验且试验结果不合的单件不能验收,但该批材料中未做试验的单件可逐件重新提交试验和验收。

9 包装、标志及检验文件

钢板及钢带的包装、标志及检验文件应符合 Q/BQB 400 的规定。如需方对包装重量有特殊要求,应在合同中注明。

10 数值修约规则

数值修约规则应符合 GB/T 8170 的规定。

11 国内外牌号近似对照

本标准牌号与国内外标准牌号的近似对照见附录B。

附录A

(规范性附录)

烘烤硬化值(BH2)的测量方法

A.1 试样

试样的尺寸、取样方向按力学性能试样的规定。

A.2 试验条件

测量烘烤硬化值时,按照GB/T228的规定,首先对试样进行总延伸为2%的预拉伸,同时测得 $R_{t2.0}$ 。当预拉伸2%的试样完成规定的热处理后,再次对试样进行拉伸试验,测得 R_{eL} 或 $R_{p0.2}$ 。

为了更好地保持试验结果的一致性,宜采用位移或应变的方式控制拉伸速度,并推荐按照试样平行长度的5%/min的速率设定拉伸速度,从开始拉伸直到测出上述指标过程中,不要进行速度切换。

 $R_{t2} = F_{t2.0}/A_0$

 $R_{p0.2} = F_{p0.2}/A_1$

 $R_{eL} = F_{eL}/A_1$

其中:

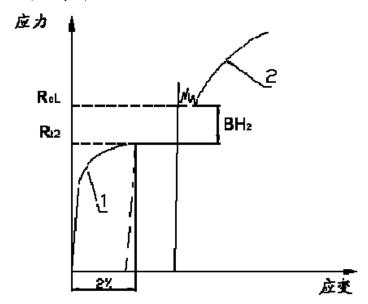
 $F_{t2.0}$ — 试样拉伸变形至总延伸为 2%时的拉伸力 (N);

 $F_{p0.2}$ — 热处理后的试样非比例延伸为 0.2%时的拉伸力(无明显屈服时)(N);

 F_{eL} - 热处理后的试样出现下屈服时的拉伸力 (N);

 A_0 — 为试样原始截面积 (mm²);

 $A_1 - 为 2% 预应变后的试样截面积 (mm²)。$


A.3 热处理条件

加热装置温度达到 170 \mathbb{C} 后放入已经过 2% 预应变的试样,待加热装置重新达到 170 \mathbb{C} 后,保温 (20 ± 0.5) 分钟。温度控制精度保持 ±2 \mathbb{C} ,温度测量装置的分辨率最大不超过 1 \mathbb{C} 。加热后试样在空气中冷却到室温。

A.4 烘烤硬化值(BH₂)的计算

烘烤硬化值(BH_2)为试样烘烤后的下屈服强度或非比例延伸 0.2%(无明显屈服时)对应的屈服强度与烘烤前同一个试样总延伸 2%对应的屈服强度的差值。 BH_2 的计算示意图 如图 A.1 所示,计算公式如下:

 $BH_2 = R_{eL}$ (或 $R_{p0.2}$) (烘烤后) $- R_{t2.0}$ (烘烤前)

1. 2%预应变的应力-应变曲线; 2.同一试样烘烤后的应力-应变曲线 图 A.1—BH₂ 计算示意图

附录 B

(资料性附录)

本标准牌号与国内外标准牌号的近似对照表

表 B.1

Q/BQB	GB/T	EN	JIS G	ASTM	JFS A	Q/BQB
416-2009	20564.1-2007	10268:2006	3135:2005	A1008M-07b	2001:1998	416-2003
B140H1	CR140BH	_	-		JSC270H	B140H1
B180H1	_	_	SPFC340H		JSC340H	B180H1
B180H2	CR180BH	HC180B	_	BHS Grade180	_	B180H2
HC180B	CKTOODIT	пстоов		Bilo Glade 100		D100112
HC220B	CR220BH	HC220B		BHS Grade210	_	_
HC260B	CR260BH	HC260B	_	BHS Grade240	_	_
HC200B	CKZOODH	HC200B		BHS Grade280		
HC300B	CR300BH	HC300B	_	BHS Grade300	_	_

附加说明:

本标准参考 JFS A 2001:1998, EN10268:2006 编制。

本标准代替 Q/BQB 416-2003。

本标准与 Q/BQB416-2003 相比, 主要变化如下:

- 修改了烘烤硬化钢的定义;
- 新增牌号 HC180B、HC220B、HC260B、HC300B,并规定其化学成分和力学性能;
- 修改 B140H1、B180H1、B180H2 等 3 个牌号的 r 值和 n 值要求;

本标准的附录 A 为规范性附录, 附录 B 为资料性附录。

- 本标准由宝山钢铁股份有限公司技术质量管理部提出。
- 本标准由宝山钢铁股份有限公司技术质量管理部起草。
- 本标准起草人 涂树林。
- 本标准于 2003 年首次发布,本次为第一次修订。